summaryrefslogtreecommitdiff
path: root/2022/day19.py
blob: 4d5da5216d5b77d5b37de619d3a3b8c85b05798b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
#!/usr/bin/env python3

# import numpy as np
from functools import reduce
from re import findall
from copy import deepcopy
import sys

# filename = "in/day19.ref"
filename = "in/day19.pzl"
data = open(filename).read()
lines = [line for line in data.rstrip('\n').split('\n')]

bps = list()

for line in lines:
    a = line.split(' ')
    b = dict()
    b['num'] = int(a[1].strip(':'))
    b['ore_cost_ore'] = int(a[6])
    b['cly_cost_ore'] = int(a[12])
    b['obs_cost_ore'] = int(a[18])
    b['obs_cost_cly'] = int(a[21])
    b['geo_cost_ore'] = int(a[27])
    b['geo_cost_obs'] = int(a[30])
    bps.append(b)
# print(bps)


def solve(time, end_time, bp, s):
    m = 0
    needed_r_ore = max(bp['ore_cost_ore'],
                  bp['cly_cost_ore'],
                  bp['obs_cost_ore'],
                  bp['geo_cost_ore']
    )
    needed_r_cly = bp['obs_cost_cly']
    needed_r_obs = bp['geo_cost_obs']

    r_ore, r_cly, r_obs, r_geo, ore, cly, obs, geo = s

    # if time == 10:
    #     print([len(i) for i in best_s])

    if geo < best_geo[time]:
        return 0
    best_geo[time] = geo

    if s in best_s[time]:
        return 0
    best_s[time].add(s)

    if time == end_time:
        return geo


    # build none
    r_ore, r_cly, r_obs, r_geo, ore, cly, obs, geo = s
    if True:
        ore += r_ore
        cly += r_cly
        obs += r_obs
        geo += r_geo
        sc = r_ore, r_cly, r_obs, r_geo, ore, cly, obs, geo
        m = max(m, solve(time+1, end_time, bp, sc))

    # build ore robot
    r_ore, r_cly, r_obs, r_geo, ore, cly, obs, geo = s
    if ore >= bp['ore_cost_ore'] and r_ore < needed_r_ore:
        ore -= bp['ore_cost_ore']

        ore += r_ore
        cly += r_cly
        obs += r_obs
        geo += r_geo
        r_ore += 1

        sc = r_ore, r_cly, r_obs, r_geo, ore, cly, obs, geo
        m = max(m, solve(time+1, end_time, bp, sc))

    # build cly robot
    r_ore, r_cly, r_obs, r_geo, ore, cly, obs, geo = s
    if ore >= bp['cly_cost_ore'] and r_cly < needed_r_cly:
        ore -= bp['cly_cost_ore']

        ore += r_ore
        cly += r_cly
        obs += r_obs
        geo += r_geo
        r_cly += 1

        sc = r_ore, r_cly, r_obs, r_geo, ore, cly, obs, geo
        m = max(m, solve(time+1, end_time, bp, sc))

    # build obs robot
    r_ore, r_cly, r_obs, r_geo, ore, cly, obs, geo = s
    if ore >= bp['obs_cost_ore'] and cly >= bp['obs_cost_cly'] and r_obs < needed_r_obs:
        ore -= bp['obs_cost_ore']
        cly -= bp['obs_cost_cly']

        ore += r_ore
        cly += r_cly
        obs += r_obs
        geo += r_geo
        r_obs += 1

        sc = r_ore, r_cly, r_obs, r_geo, ore, cly, obs, geo
        m = max(m, solve(time+1, end_time, bp, sc))

    # build geo robot
    r_ore, r_cly, r_obs, r_geo, ore, cly, obs, geo = s
    if ore >= bp['geo_cost_ore'] and obs >= bp['geo_cost_obs'] :
        ore -= bp['geo_cost_ore']
        obs -= bp['geo_cost_obs']

        ore += r_ore
        cly += r_cly
        obs += r_obs
        geo += r_geo
        r_geo += 1

        sc = r_ore, r_cly, r_obs, r_geo, ore, cly, obs, geo
        m = max(m, solve(time+1, end_time, bp, sc))

    return m


r_ore = 1
r_cly = 0
r_obs = 0
r_geo = 0
ore = 0
cly = 0
obs = 0
geo = 0
s = r_ore, r_cly, r_obs, r_geo, ore, cly, obs, geo


res1 = 0
end_time = 24
for num,bp in enumerate(bps):
    best_s = [set() for i in range(end_time + 1)]
    best_geo = [0 for i in range(end_time + 1)]
    res = solve(0, end_time, bp, s)
    # print(res)
    res1 += (num+1) * res

res2 = 1
end_time = 32
for bp in bps[:3]:
    best_s = [set() for i in range(end_time + 1)]
    best_geo = [0 for i in range(end_time + 1)]
    res = solve(0, end_time, bp, s)
    # print(res)
    res2 *= res

print('res1:', res1)
print('res2:', res2)